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Abstract

We derive a proper formulation of the singular Björling problem for spacelike maximal surfaces with singularities in the
Lorentz–Minkowski 3-space which roughly asks whether there exists a maximal surface that contains a prescribed curve as
singularities, and then provide a representation formula which solves the problem in an affirmative way. As consequences, we
construct many kinds of singularities of maximal surfaces and deduce some properties of the maximal surfaces related to the
singularities due to the geometry of the Gauss map.
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1. Introduction

Spacelike maximal surfaces in Lorentz–Minkowski 3-space L3 are similar to minimal surfaces in Euclidean 3-
space E3 in that they also admit Weierstrass representation formula [14]. But they are very different from the minimal
surfaces in that they have naturally arising singularities due to the geometry of the Gauss map of spacelike surfaces
in L3. The presence of singularities seems to be the cause of neglect for maximal surfaces until recent years, but
the singularities are main ingredients in studying maximal surfaces. Because of the analytic continuation principle,
if we can understand the local behaviors of maximal surfaces around those singularities, then in principle we can
understand their global behaviors. Therefore, it is valuable to have a tool for constructing maximal surfaces which
contains a prescribed set in L3 as singularities.

Study of singularities of spacelike maximal surfaces has gained momentum recently. Fujimori, Saji, Umehara
and Yamada showed that the generic singularities of the maxfaces are cuspidal edges, swallowtails, and cuspidal
crosscaps [9,17]. Fernández, López, and Souam studied isolated singularities [5–8].

The purpose of this article is to investigate the singularities of maximal surfaces in L3 from the viewpoint of
the singular Björling problem which asks, roughly speaking, whether there exists a spacelike maximal surface that
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Fig. 1. Maximal surfaces which contain prescribed null curves as singularities.

contains a prescribed curve in L3 as a singular set and prescribed null directions on the curve as the normal directions
to the surface. We derive a proper formulation of this problem in Section 3 and answer it affirmatively in Theorem 3.2
(see Fig. 1).

Very recently, the Björling problem has been studied for various kinds of surfaces which admit a holomorphic
representation formula [1–3,10,11,15,16,18]. In particular, Alı́as, Chaves, and Mira studied the (regular) Björling
problem for maximal surfaces [2], and Gálvez and Mira studied the Björling problem for embedded isolated
singularities of flat surfaces in hyperbolic 3-space [11].

A direct consequence of the singular Björling representation formula is that we now have a general method of
constructing singularities of maximal surfaces, which is a very important tool for understanding the singularities of
maximal surfaces.

Fernández, López, and Souam showed that maximal surfaces have a reflection principle with respect to an isolated
singularity. As an application of the singular Björling representation formula, we show that the reflection principle
holds also with respect to a more general kind of singularity which we call a shrunken singularity. We also show that
the conjugate of a shrunken singularity possesses a similar reflection property. See Theorem 4.3.

Another application of the singular Björling formula is to show that an arbitrary maximal surface with a shrunken
singularity converges to a parabolic catenoid when we continuously deform the surface by rotating it around a
spacelike line through the isolated singularity and applying homothety centered at the singularity with a suitable
homothety factor. See Lemma 4.4.

2. Preliminaries

In this article, the order of coordinates in L3 is (x, y, t), where t is the time component. The metric is
dx2

+ dy2
− dt2.

The spacelike maximal surfaces that we construct in this article are mostly generalized maximal surfaces, so we
recall a few facts from [4]:

Definition 2.1 ([4]). Let S be a Riemann surface and X = (x, y, t) : S → L3 be nonconstant and harmonic. Suppose
that at any point p of S there exists a (complex) coordinate neighborhood (U, z) such that the complexified derivatives
φ1 = ∂x/∂z, φ2 = ∂y/∂z, φ0 = ∂t/∂z satisfy

φ2
1 + φ2

2 − φ2
0 = 0, (2.1)

|φ1|
2
+ |φ2|

2
− |φ0|

2
6≡ 0 (not identically zero). (2.2)

Then (X, S) is said to be a generalized maximal surface. This is the end of Definition 2.1.
A generalized maximal surface X :M→ L3, whereM is a Riemann surface, can be written locally as

φ(z) =

(
1
2
(g−1

+ g),
i
2
(g−1

− g), 1
)

dh, X (z) = (x0, y0, t0)+ Re
∫ z

z0

φ(z), z ∈ U

for some meromorphic function g and a holomorphic 1-form dh on some domain U ⊂ C such that the poles of g
with order m are zeros of dh of order at least m. The unit normal and the metric are N =

(
ḡ+g

1−gḡ ,
i(ḡ−g)
1−gḡ ,

1+gḡ
1−gḡ

)
and

ds2
=

1
4 (|g|

−1
− |g|)2|dh|

2. g is called the Gauss map of X , and (2.2) is equivalent to

|g| 6≡ 1. (2.3)

Let

A := {p ∈M : |g(p)| = 1}, B := {p ∈M : d X (p) vanishes}

p ∈M is a singular point if and only if p ∈ A∪B. In general,A∩B 6= ∅. Singular points in B \ (A∩B) are isolated
but singular points in A cannot be isolated. This is the end of quotes from Ref. [4].
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There exist many concepts in literature dealing with the singular points inA, such as conelike singularity, lightlike
singularity, isolated singularity, special singularity, to name but a few. In this article, we divide A into three disjoint
sets as in the following definition, where Dp(ε) is an open disk of radius ε centered at p. Note that for any
p ∈ A \ {critical points of g}, there is some Dp(ε) ⊂ U and a regular embedded curve γ : I → Dp(ε) ⊂ U
such that γ [I ] = Dp(ε) ∩A. See for example [4,17].

Definition 2.2. We call p ∈ A a shrinking singular point if there is some Dp(ε) ⊂ U and a regular embedded curve
γ : I → Dp(ε) ⊂ U such that γ [I ] = Dp(ε) ∩A and X ◦ γ is a single point. If p is a shrinking singular point, we
call X (p) a shrunken singular point, and the germ of (X, Dp(ε)) a shrunken singularity.

We call p ∈ A a curvilinear singular point if there is some Dp(ε) ⊂ U and a regular embedded curve
γ : I → Dp(ε) ⊂ U such that γ [I ] = Dp(ε) ∩ A and X ◦ γ is one-to-one on I . If p is a curvilinear singular
point, we call the germ of (X, Dp(ε)) a curvilinear singularity.

We call p ∈ A which is neither shrinking nor curvilinear an exotic singular point.

The concept of a shrunken singularity is closely related to that of an isolated singularity in the sense of [5–8], but
the former is somewhat more general than the latter. For example, the singularities of the parabolic or hyperbolic
catenoids described below are shrunken singularities but not isolated singularities. A curvilinear singular point may
have vanishing d X , so it is not an admissible singular point in the sense of [17]. An example of an exotic singular
point is given in Remark 3.12.

We do not require that the rank of d X is never zero, so X may not be a maxface in the sense of [17]. Since the
Björling problem is a local question, we only consider generalized maximal surfaces defined on an open and simply
connected domain U in C in this article. But whenever necessary and possible we apply the analytic continuation
principle to extend U to a Riemann surface.

Rotationally invariant maximal surfaces are the simplest but still the motivating examples so we list some of
their properties, a good reference for which is [2]. There are three kinds of catenoids, elliptic, parabolic, hyperbolic,
depending upon their causal character of the axis of rotation.

Xec(u, v) = (cos u sinh v, sin u sinh v, v), (u, v) ∈ S1
× R,

X pc(a, b) =

(
b +

1
3

b3
− a2b, 2ab, b −

1
3

b3
+ a2b

)
, (a, b) ∈ R2,

Xhc(α, β) = (β, sinβ sinhα, sinβ coshα), (α, β) ∈ R2.

(2.4)

For the elliptic catenoid, the entire u-circle collapses to form a conelike singularity. For the hyperbolic catenoid, the
horizontal line β = nπ for any n ∈ Z is mapped to a single point (nπ, 0, 0), which is not an isolated singularity but a
shrunken singularity. Furthermore,

∂αXhc(α, nπ) = (0, 0, 0), ∂βXhc(α, nπ) = (1, (−1)n sinhα, (−1)n coshα).

The collection of all the ∂βXhc(α, nπ) as α varies from −∞ to ∞ becomes a (branch of a) hyperbola in the lightcone.
The following are the Weierstrass data for the elliptic, parabolic, hyperbolic catenoids:

φec(z) = −i(cos z, sin z, 1)dz, z = u + iv,

φpc(w) = −i(1 − w2, 2w, 1 + w2)dw, w = a + ib,
φhc(ζ ) = −i(1, sinh ζ, cosh ζ )dζ, ζ = α + iβ.

(2.5)

We notice that if z, w, ζ are real, then vectors iφec/dz, iφpc/dw, iφhc/dζ become an ellipse, a parabola, or a hyperbola
in the lightcone which passes through (1, 0, 1) when z = w = ζ = 0.

The following are the conjugates of the elliptic, parabolic, and hyperbolic catenoids, which are called the helicoid
of the first kind, Cayley’s ruled surface, and the helicoid of the second kind, respectively, in [2].

Xeh(u, v) = (− sin u cosh v, cos u cosh v,−u), (u, v) ∈ R2,

X ph(a, b) =

(
−a +

1
3

a3
− ab2,−a2

+ b2,−a −
1
3

a3
+ ab2

)
, (a, b) ∈ R2,

Xhh(α, β) = (−α,− coshα cosβ,− sinhα cosβ), (α, β) ∈ R × S1.

(2.6)



2170 Y.W. Kim, S.-D. Yang / Journal of Geometry and Physics 57 (2007) 2167–2177

Being the conjugate of the hyperbolic catenoid, the helicoid of the second kind has the singularities at the lines
v = nπ . The surface is periodic with period 2π in the v direction; hence there are two singular curves in the (image
of the) helicoid of the second kind whose velocity vectors form a hyperbola in the lightcone.

Note that X∗c(x,−y) = −X∗c(x, y) and X∗h(x,−y) = X∗h(x, y) where ∗ ∈ {e, p, h}.
For any ϕ ∈ (−∞, 0], consider the following hyperbolic rotation of L3:

Rϕ

x
y
t

 =

coshϕ 0 sinhϕ
0 1 0

sinhϕ 0 coshϕ

x
y
t

 . (2.7)

The image of the timelike line x = y = 0 or a spacelike line y = t = 0 under Rϕ is still a timelike or spacelike line,
but its limit as ϕ → ±∞ is a timelike line. This motivates that we may deform an elliptic or hyperbolic catenoid to a
parabolic catenoid. It turns out that for any (a, b) ∈ R2

1
2

e−2ϕRϕ ◦ X?c(2eϕa, 2eϕb) → X pc(a, b) as ϕ → −∞ (2.8)

where ? ∈ {e, h}. Later in Lemma 4.4, we apply the Björling formula to analyze this phenomena for arbitrary maximal
surfaces with isolated singularities.

3. Singular Björling representation formula for maximal surfaces

Suppose that any γ (u) of a smooth curve γ : I → U is a shrinking singular point or a curvilinear singular point of
a generalized maximal surface (X,U). Here, the image of X ◦ γ may have corners as we see in Fig. 1. We first have
the following

Lemma 3.1. γ is a null curve.

Proof. 1
〈γ ′, γ ′

〉 = 0 since 〈, 〉 itself vanishes at singular points. �

Therefore, in considering a singular Björling problem, we only consider null curves.
Now we want to prescribe one more datum. Recall that in the usual Björling formula, it appears as the unit normal

vector field along the prescribed curve. The situation is somewhat different here since the unit normals of a generalized
maximal surface on the singular curve are not well defined as vectors in L3.

But we observe that what we really need in the Björling problem is a curve and a family of tangent planes along
the curve. So we consider a singular curve and a vector field which is perpendicular to the curve and whose length is
the same as the speed of the curve. At this point we recall the well known fact that two null vectors are perpendicular
to each other if and only if they are parallel to each other, and obtain the following formulation.

Singular Bjölring problem for generalized maximal surfaces. Given a real analytic null curve γ : I → L3 and a real
analytic null vector field L : I → L3 such that γ ′(u) and L(u) are proportional for all u ∈ I and that at least one of
γ ′(u) and L(u) is not identically E0, find a generalized maximal surface X (u, v) with (u, v) as a conformal parameter
whose u-parameter curve X (u, 0) is γ (u) and whose coordinate vector field Xv(u, 0) along γ is L(u) for all u ∈ I .

We have the following answer to the above problem.

Theorem 3.2. Given u, I , γ = (γ1, γ2, γ0) and L = (L1,L2,L0) as above, define

g(u) :=

{(
γ ′

1(u)+ iγ ′

2(u)
)
/γ ′

0(u) if γ ′
6≡ E0,

(L1(u)+ iL2(u)) /L0(u) if γ ′
≡ E0.

(3.1)

If the analytic extension g(z) of g(u), where z = u + iv ∈ U ⊂ C, I ⊂ U , satisfies

|g(z)| 6≡ 1, (3.2)

1 We thank Umehara for giving us this short argument.
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then there is exactly one generalized maximal surface X : U → L3 with u + iv as a conformal parameter and
X (u, 0) = γ (u), Xv(u, 0) = L(u). It is given by

X (u + iv) = γ (u0)+ Re
∫ z

u0

γ ′(w)− iL(w)dw (3.3)

where u0 ∈ I is fixed.

Proof. For the uniqueness, suppose there exists such a generalized maximal surface X . Then, (Xu − iXv)(z) is
holomorphic, and is equal to γ ′(u) − iL(u) on I . By analyticity, (Xu − iXv)(z) must be the analytic extension of
γ ′(u)− iL(u) which proves the uniqueness.

It is clear that the parametrization X given by (3.3) is a a generalized maximal surface which solves the singular
Björling problem. Note that g(z) in (3.2) is the Gauss map of X . �

Note that the conjugate maximal surface contains the integral curve of L as a singular curve and the normal direction
at the curve is −γ ′.

Corollary 3.3. There is no generalized maximal surface which contains a piece of a null line as a singular curve.

Proof. If there were such a surface, then we could reconstruct it by (3.3) with γ as a straight null line segment.
However, for any null L with γ ′

⊥ L, the X in (3.3) is a straight null line segment, which is not a generalized
maximal surface by definition. In fact, (3.2) is violated for any null L with γ ′

⊥ L in this case. �

Suppose we are given a null curve δ(θ) and a null vector field N (θ), which are periodic in θ , such that δ̇ and N
are perpendicular to each other. Then, because of the periodicity, we expect that the singular points are on the unit
circle rather than on the real axis. This can be done as follows: Let z = u + iv, ξ = eiz

= reiθ . Then the u-axis in the
z-plane is mapped to the unit circle in the ξ -plane. Now we observe

φ =

2Xzdz = (Xu − iXv)dz,

2Xξdξ =

(
Xr −

i
r

Xθ

)
e−iθdξ, so φ =

{
2Xzdz = (Xu − iXv)du if v ≡ 0,
2Xξdξ = (Xθ + iXr )dθ if r ≡ 1.

Hence

X (reiθ ) = δ(θ0)+ Re
∫ ξ

eiθ0
φ(ξ) (3.4)

where φ(ξ) is the unique analytic extension of (δ̇(θ) + iN (θ))dθ . (By the analytic extension, we mean replacing eiθ

and dθ by ξ and −idξ/ξ , respectively.)
So, a null curve and a null vector field do not determine a maximal surface in a unique way. The curve on the

Riemann surface over which the two vector fields are parameterized must also be prescribed. Depending upon a
choice of a parameter, the Björling data takes a different form.

Example 3.4. Consider

δ(θ) = E0, N (θ) =
(cos θ, sin θ, 1)

2 − 2 cos 2θ
.

Then (3.4) yields φ = ( 1
2 (ξ + ξ−1), 1

2i (ξ − ξ−1), 1) −ξdξ
(ξ2−1)2 . If ξ =

ez
+i

ez−i then φ = i(sinh z, 1, cosh z)dz, which we can
easily identify, from (2.5), as a null form for the hyperbolic catenoid. That is, these are Björling data for a hyperbolic
catenoid.

Some of the interesting examples in [5] can be considered as generalizations of the hyperbolic catenoid through these
Björling data. See Example 3.11.

We call (3.3) or (3.4) the singular Björling representation formula for maximal surfaces.
Convention: In the rest of this article, we use γ (u),L(u) and z = u + iv to denote the Björling data if the singular set
is parameterized by the real axis in the parameter domain of the maximal surface, but use δ(θ),N (θ) and ξ = reiθ if
the singular set is parameterized by the unit circle in the parameter domain.
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Table 1
Criteria for singularities in [9,17]

Re
[

g′

g2ω̂

]
6= 0 Im

[
g′

g2ω̂

]
6= 0 ⇔ p is a cuspidal edge.

Re
[

g′

g2ω̂

]
6= 0 Im

[
g′

g2ω̂

]
= 0 Re

[
g
g′

(
g′

g2ω̂

)′
]

6= 0 ⇔ p is a swallowtail.

Re
[

g′

g2ω̂

]
6= 0 Im

[
g′

g2ω̂

]
= 0 Re

[
g
g′

(
g′

g2ω̂

)′
]

= 0 ⇔ ??

Re
[

g′

g2ω̂

]
= 0 Im

[
g′

g2ω̂

]
6= 0 Im

[
g
g′

(
g′

g2ω̂

)′
]

6= 0 ⇔ p is a cuspidal crosscap.

Re
[

g′

g2ω̂

]
= 0 Im

[
g′

g2ω̂

]
6= 0 Im

[
g
g′

(
g′

g2ω̂

)′
]

= 0 ⇔ ??

Re
[

g′

g2ω̂

]
= 0 Im

[
g′

g2ω̂

]
= 0 ⇔ ??

Example 3.5 (Reconstruction of the Elliptic, Parabolic, and Hyperbolic Catenoids). Consider

Nec(u) = (cos u, sin u, 1), Npc(u) = (1 − u2, 2u, 1 + u2), Nhc(u) = (1, sinh u, cosh u).

They are a circle, a parabola, and a hyperbola in the lightcone, which pass through (1, 0, 1). The analytic extensions
of −iNec(u)du,−iNpc(u)du,−iNhc(u)du become the null form for the elliptic, parabolic, and hyperbolic catenoids,
as we see from (2.5).

Since the conic sections form a continuous family, we may regard the various catenoids to be in a continuous family
by this lemma.

Example 3.6 (Perturbing the Helicoid of the First Kind). Consider

γ (u) = (sin u,− cos u, u), L(u) = εu(cos u, sin u, 1) where ε ∈ R.

Note that εuγ ′(u) = L(u). Then, using (3.3), the resulting maximal surface is

X (u, v) = (cosh v sin u,− cos u cosh v, u)+ ε(−v cosh v sin u + sinh v sin u

− u cos u sinh v, v cos u cosh v − cos u sinh v − u sin u sinh v,−uv).

It has the Weierstrass data g = eiz, dh = (1 − iεz)dz. For any ε, the u-axis is the set of all singular points of X , whose
image by X is the prescribed set γ [(−∞,∞)]. If ε = 0, all the singularities are folded singularities, whose definition
appears later in Definition 4.1. If ε 6= 0, z = 0 is a cuspidal crosscap singularity and all other singularities are cuspidal
edges, according to the criteria in Table 1.

Example 3.7 (Perturbing the Elliptic Catenoid). Fix ε ∈ R and consider

δ(θ) = ε

(
cos θ +

1
3

cos 3θ,− sin θ +
1
3

sin 3θ, cos 2θ
)
, N (θ) = (cos θ, sin θ, 1).

Note that δ̇(θ) = −2ε sin 2θN (θ). Using (3.4), we obtain maximal surfaces with Weierstrass data g = ξ, dh =

(1+ε(ξ2
−ξ−2))ξ−1dξ . When ε is small but nonzero, the resulting generalized maximal surface is a small perturbation

around E0 ∈ L3 of the elliptic catenoid, whose singular set is no longer a point but a curve in L3.

This example raises the following question: Is it possible to perturb conelike singularities of an arbitrary maximal
surface so that they become another sort of singularities? This perturbation amounts to replacing isolated singularities
by other sorts of singularities, and if successful, would be similar in spirit to the desingularization construction in [12],
which replaces the intersections of coaxial catenoids in E3 by suitably modified pieces of Scherk surfaces. One
interesting candidate for the substitute of a conelike singularity is the family of surfaces in [13].

It is possible to perturb an elliptic catenoid while maintaining the singular set as being still a conelike singularity.
Any generalized maximal surface with a conelike singularity, other than that of the elliptic catenoid, may be thought
to be a perturbation of the elliptic catenoid at least in a small neighborhood of the conelike singularity [5–8].
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Fig. 2. The generalized maximal surfaces in Examples 3.8 and 3.9.

Now we construct interesting examples by choosing γ (u),L(u) or δ(θ),N (θ) appropriately in (3.3) or (3.4),
respectively.

Example 3.8 (Immersed Isolated Singularity). Consider

δ(θ) = E0, N (θ) :=

(
1 + a cos

θ

2

)
(cos θ, sin θ, 1), a ∈ (−1, 1).

This produces an isolated singularity, the projection of the top or the bottom half of which into the xy-plane by
(x, y, t) → (x, y) is double sheeted. See Fig. 2.

We may understand many properties of the above example by [6, Lemma 2.1] also.

Example 3.9 (Helicoidal Shrunken Singularity). Consider

γ (u) := E0, L(u) := u(cos u, sin u, 1).

The image of L is a conical helix in the lightcone. This produces a shrunken singularity. See Fig. 2.

If the Weierstrass data g and dh of a generalized maximal surface are known, the Björling data for the generalized
maximal surface can be derived as follows: At a singular point in B, we have, using gḡ = 1

Xu

/
1
2

(
dh
dz

+
dh
dz

)
= Xv

/
i
2

(
dh
dz

−
dh
dz

)
=

(
1
2
(ḡ + g),

i
2
(ḡ − g), 1

)
. (3.5)

If the singularities are located on the u axis, then this formula is sufficient for deriving the Björling data. If the
singularities are located on the unit circle eiθ then

Xθ = −r sin θXu + r cos θXv, Xr = cos θXu + sin θXv with r = 1. (3.6)

Example 3.10 ([17, Example 5.2]). If g(ξ) = ξ, dh = 2ξdξ , then

δ(θ) =

(
cos θ +

1
3

cos 3θ,− sin θ +
1
3

sin 3θ, cos 2θ
)
, N (θ) = 2 cos 2θ(cos θ, sin θ, 1),

up to a translation of L3. Note that δ̇(θ) = − tan(2θ)N (θ) and that the null curve δ has corners.

Example 3.11 ([5]). The generalized maximal surface in [5] with g(ξ) = ξ and

dh =
−dξ

(ξ − a)(ξ − a−1)
, or

dh =
−ξdξ

(ξ2 − a2)(ξ2 − a−2)
, or

dh =
−dξ

w(ξ − a−1)(ξ − b−1)
with w2

=
(ξ − a)(ξ − b)

(ξ − a−1)(ξ − b−1)
, or

dh =
−ξdξ

w(ξ2 − a−2)(ξ2 − b−2)
with w2

=
(ξ2

− a2)(ξ2
− b2)

(ξ2 − a−2)(ξ2 − b−2)
,



2174 Y.W. Kim, S.-D. Yang / Journal of Geometry and Physics 57 (2007) 2167–2177

Table 2
Our criteria for singularities

B0 6= 0 A0 6= 0 ⇔ z = 0 is a cuspidal edge.
B0 6= 0 A0 = 0 A1 6= 0 ⇔ z = 0 is a swallowtail.
B0 6= 0 A0 = 0 A1 = 0 ⇔ ??
B0 = 0 A0 6= 0 B1 6= 0 ⇔ z = 0 is a cuspidal crosscap.
B0 = 0 A0 6= 0 B1 = 0 ⇔ ??
B0 = 0 A0 = 0 ⇔ ??

for 0 < a < b < 1 has, up to a translation of L3, the Björling data δ(θ) = E0 and

N (θ) =
(cos θ, sin θ, 1)

a − 2 cos θ + a−1 , or

N (θ) =
(cos θ, sin θ, 1)

a2 − 2 cos 2θ + a−2 , or

N (θ) =
(cos θ, sin θ, 1)

√
a − 2 cos θ + a−1

√
b − 2 cos θ + b−1

, or

N (θ) =
(cos θ, sin θ, 1)

√
a2 − 2 cos 2θ + a−2

√
b2 − 2 cos 2θ + b−2

.

It is the singly periodic generalized maximal surface with one conelike singularity, or the example in L/〈T 〉 with one
singular point and nonparallel ends (i.e. the Scherk type maximal surfaces), or the example in L/〈T 〉 with two singular
points and parallel ends, or the example in L3/〈T1, T2〉 with two singular points, respectively, in [5].

Now we proceed to pose a general method of constructing singularities of maximal surfaces, including the generic
singularities of maxfaces which have been classified by Fujimori, Saji, Umehara, and Yamada [9,17]. First, we recall
the criteria in Table 1 for cuspidal edge, swallowtail, cuspidal crosscap singularities of maxfaces in [9,17] where ω̂ is
the analytic function such that dh = gω̂dz and all the functions are evaluated at p.

Now, consider

φ(z) = (φ1(z), φ2(z), φ0(z)) = (cos z, sin z, 1) (α(z)− iβ(z)) dz (3.7)

where

α(z) = A0 + A1z + A2z2
+ · · · , β(z) = B0 + B1z + B2z2

+ · · · ,

for real numbers Ai , B j . We assume that α(0) − iβ(0) 6= 0, that is, A0 6= 0 or B0 6= 0. Then g(z) =

φ0(z)/ (φ1(z)− iφ2(z)) = eiz , ω̂(z) = (α(z)− iβ(z))e−iz ; hence

g′

g2ω̂
=

i
α(z)− iβ(z)

,
g
g′

(
g′

g2ω̂

)′

=
α′(z)− iβ ′(z)

−(α(z)− iβ(z))2
.

Direct calculations show that
i

α(0)− iβ(0)
=

−B0 + iA0

A2
0 + B2

0
,

α′(0)− iβ ′(0)
−(α(0)− iβ(0))2

=
[A1(A2

0 − B2
0 )+ 2A0 B0 B1] + i[2A0 B0 A1 − B1(A2

0 − B2
0 )]

−(A2
0 + B2

0 )
2

.

So the above criteria can be rewritten in terms of Ai ’s and B j ’s as in Table 2.
So by choosing A0 and B0 appropriately, we can construct different characters of singularities of maximal surfaces.

We believe that this construction will enable us to study the singularities which are not generic.

Remark 3.12. Consider φ(z) =
(
cos(zk), sin(zk), 1

)
(α(z)− iβ(z)) for some natural number k ≥ 2 and α(z), β(z)

as above. Then, g(z) = eizk
; hence the set of singular points is k number of lines intersecting at the origin. Note that

in this case Re[ g′

g2ω̂
(0)] = Im[

g′

g2ω̂
(0)] = 0.
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4. Shrunken singularities and folded singularities

We first set:

Definition 4.1. We call a curvilinear singular point p ∈ U a folding singular point if it has a neighborhood that can be
reparameterized as X : D0(ε) ⊂ C → L3 with p = 0 such that the singular points are on the u-axis and Xv(u, 0) ≡ 0.
X (D0(ε)) is called a folded singularity.

The name is motivated by the reflection principle stated in Theorem 4.3. We have the following relations between the
isolated singularities and the folded singularities.

Lemma 4.2. The conjugate maximal surface of a folded singularity is a shrunken singularity.

Proof. Trivial from the various definitions. �

This explains the relationship between the shrinking singularities of the elliptic, parabolic, hyperbolic catenoids and
the folded singularities of the helicoid of the first kind, Cayley’s ruled surface, the helicoid of the second kind,
respectively.

The following reflection principle is known for isolated singularities to Fernández, López, and Souam [8]. We state
and prove it here for shrunken singularities and folded singularities.

Theorem 4.3. Let U ⊂ C be an open domain which contains an open real interval I ⊂ R and let X, Y : U → L be
a generalized maximal surface with z = u + iv ∈ U as a conformal parameter.

(1) If X (u, 0) = (0, 0, 0) for any u ∈ I , then X (u,−v) = −X (u, v) whenever they are defined.
(2) If Y (u, 0) is a folded singularity for any u ∈ I , then Y (u, v) = Y (u,−v) whenever they are defined.

We call the above reflection principles with respect to a shrunken singularity and a folded singularity, respectively.

Proof. We may assume without loss of generality that Y is the conjugate surface of X . Let L(u) := Xv(u, 0) for u ∈ I
and let φ(z) be the analytic extension of −iL(u). Then, ψ(z) := −φ(z̄) is analytic since d

dz̄ (−φ(z̄)) = −
d
dzφ(z̄) = 0,

and coincides with φ on (a, b). Therefore, φ(z) = ψ(z) = −φ(z̄) everywhere. Then,

X (z)+ iY (z) =

∫ z

u0

φ(z)dz = −

∫ z

u0

φ(z̄)dz = −

∫ z̄

u0

φ(z̄)dz̄ = −X (z̄)+ iY (z̄).

Therefore, X (z) = −X (z̄) and Y (z) = Y (z̄), which prove the claims. �

An immediate consequence of the above reflection principle with respect to a shrunken singularity is that a
generalized maximal surface with two shrunken singularities can be extended to a bigger one with an infinite number
of shrunken singularities by successive reflections across the shrunken singularities.

Suppose X is a solution of the singular Björling problem with the null curve γ and the null vector field L. Since

X (u, v) ≈ X (u, 0)+ Xv(u, 0)v = γ (u)+ L(u)v if v ≈ 0,

we see that γ andL determine the first-order shape of the singularities on γ , though this formula says nothing about the
first-order shape of folded singularities. This explains the general shape of the shrunken singularities of the parabolic
or the hyperbolic catenoid.

The same reasoning applied to a solution X of the singular Björling problem with the null curve δ and the null
vector field N says that the first-order shape of X is given by

X (reiθ ) ≈ X (eiθ )+ Xr (eiθ )(r − 1) = δ(θ)+N (θ)(r − 1) if r ≈ 1.

In particular, if δ(θ) ≡ 0, then X (reiθ ) ≈ N (θ)(r − 1) for r ≈ 1. Depending upon the behavior ofN , we get various
kinds of isolated singularities. This provides a heuristic explanation of the behaviors of isolated singularities stated
in [6, Lemma 2.1].

Fig. 3 shows isolated singularities with δ(θ) = 0 and N (θ) = (cos θ, sin θ, 1)t (θ) for t (θ) = 1 − cos θ, 1 +

2 cos θ, 1 − cos nθ which are motivated by the cardioid, the limaçon, or the 2n-leaved rose, respectively.
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Fig. 3. Examples of isolated singularities.

As an application of the singular Björling representation formula, we show that the parabolic catenoid is the unique
limit of the deformation of an arbitrary generalized maximal surface with a shrunken singularity by rotation and
homothety, as follows: We may assume without loss of generality that around any shrinking singular point of a
generalized maximal surface there is a local coordinate z = u + iv such that the Björling data for the surface are

γ (u) ≡ E0, L(u) = (cos f (u), sin f (u), 1) t (u)

for some real analytic functions f (u) and t (u) with f (0) = 0, t (0) = 1.

Lemma 4.4. Let Rϕ be the hyperbolic rotation as in (2.7). Then eϕRϕ : L3
→ L3 deforms the above generalized

maximal surface to the (n-sheeted) parabolic catenoid as ϕ → −∞.

Proof. Let f (u) = Aun
+ · · · for some A ∈ R \ {0} and n ∈ N. Now we restrict our attention to the domain

{z : |z| < Ceϕ/n
}. Then it is easy to see that, if ū = u n

√
|A|

2 e−ϕ , then

e−ϕRϕ ◦ L(u) →

(
1 − ū2n,

A
|A|

2ūn, 1 + ū2n
)

as ϕ → −∞,

which is the Björling data for the (n-sheeted) parabolic catenoid. �

Note that the scaling factor in the lemma is different from that of (2.8).

5. Concluding remarks

At this moment, even though we can construct generalized maximal surfaces with prescribed singularities, we
still do not have a full classification of singularities with |g| = 1 of generalized maximal surfaces. Furthermore,
we do not know how the Björling data control the global behavior, such as embeddedness and periodicity, of
the resulting generalized maximal surfaces. Their resolution will be particularly interesting for embedded periodic
maximal surfaces with isolated singularities in the sense of [7].

The singular Björling formula will be useful in investigating the behavior of ends with singularities of generalized
maximal surfaces. For example, if α(z) in (3.7) has a pole at 0, then the resulting generalized maximal surface has an
end with singularities.
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